手机十三水作弊软件|十三水棋牌游戏赚钱
首页 > 论文 > 量子电子学报 > 36卷 > 2期(pp:151-155)

基于光谱分析的罂粟识别研究

Research of identification of papaver based on spectral analysis

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

根据排查罂粟的需要,利用光纤光谱仪在室内测量了小麦、罂粟、虞美人和狗尾草等植物在450~1000 nm波长范围内的光谱反射率。运用SPSS统计软件的逐步判别分析方法获得区分四种植物的8个特征波长,以选定的特征波长点建立判别模型进行分析,以罂粟错识率及非罂粟错识率为评价指标,研究了识别效果随特征波长点及特征波长点数目的变化情况。结果表明“红边?#22791;?#36817;波长对罂粟及非罂粟的识别有重要影响,利用特征波长组合684.0,706.4,725.2,919.2 nm或684.0,694.3,706.4,725.2 nm 时,罂粟错识率及非罂粟错识率可以降到0%。

Abstract

According to the needs of investigation the illicit cultivation of opium poppy, the spectral reflectance of wheat, opium poppy, corn poppy and green bristlegrass in the wavelength range of 450~1000 nm was measured using a fiber optical spectrometer in the laboratory. Using the stepwise discriminant analysis method of SPSS statistical software, eight characteristic wavelength for distinguishing these four species of plants were obtained. The discriminant model is established with the selected characteristic wavelength point. The discriminant model takes poppy recognition error rate and the non-poppy recognition error rate as evaluation index. The variation of the recognition effect with the number of characteristic wavelength points and characteristic wavelength points was studied. The results showed that the wavelengths near the“red-edge”have an important influence on the identification of poppy and non-poppy. Using two combinations of the four characteristic wavelengths of 684.0, 706.4, 725.2, 919.2 nm or 684.0, 694.3, 706.4, and 725.2 nm, the poppy recognition error rate and non-poppy recognition error rate can be reduced to 0%.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O433

DOI:10.3969/j.issn.1007-5461. 2019.02.004

所属栏目:光谱

基金项目:Supported by National Key Research and Development Plan(国家重点研发计划, 2016YFC0800900)

收稿日期:2018-04-13

修改稿日期:2018-06-30

网络出版日期:--

作者单位    点击查看

王浩:中国科学院安徽光学精密机械研究所中国科学院大气光学重点实验室, 安徽 合肥 230031中国科学技术大学, 安徽 合肥 230026
秦来安:中国科学院安徽光学精密机械研究所中国科学院大气光学重点实验室, 安徽 合肥 230031
靖旭:中国科学院安徽光学精密机械研究所中国科学院大气光学重点实验室, 安徽 合肥 230031
何枫:中国科学院安徽光学精密机械研究所中国科学院大气光学重点实验室, 安徽 合肥 230031
谭逢富:中国科学院安徽光学精密机械研究所中国科学院大气光学重点实验室, 安徽 合肥 230031
侯再红:中国科学院安徽光学精密机械研究所中国科学院大气光学重点实验室, 安徽 合肥 230031

联系人作者:王浩([email protected])

备注:王浩 (1990-),男,博?#21487;?主要从事激光大气探测研究方面的研究。 E-mail: [email protected]

【1】Wang Jianwei. Looking at the long-term nature of anti-drug work in China from the drug situation [J]. Journal of Yunnan Police Officer Academy (云南警官学院学报), 2014(3):13-18 (in Chinese).

【2】López-Granados F, Torres-Sánchez J, Serrano-Pérez A, et al. Early season weed mapping in sunflower using UAV technology: variability of herbicide treatment maps against weed thresholds [J]. Precision Agriculture, 2016,17(2): 183-199.

【3】Alsalam B H Y, Morton K, Campbell D, et al. Autonomous UAV with vision based on-board decision making for remote sensing and precision agriculture [C]. Aerospace Conference. IEEE, 2017: 1-12.

【4】Jia Y, Su Z, Shen W, et al. UAV remote sensing image Mosaic and its application in agriculture [J]. International Journal of Smart Home, 2016, 10(5):159-170.

【5】Aries R C, Utomo S. The low-cost UAV-based remote sensing system capabilities for large scale cadaster mapping [C]. IOP Conference Series: Earth and Environmental Science, 2016:012005.

【6】Bhardwaj A, Sam L, Akanksha, et al. UAVs as remote sensing platform in glaciology: Present applications and future prospects [J]. Remote Sensing of Environment, 2016, 175:196-204.

【7】Yuan Tianjun, Wang Jiajun, et al. The review of application and standards of near infrared spectrometry [J]. Chinese Agricultural Science Bulletin (中国农学通报), 2013, 29(20): 190-19(in Chinese).

【8】Chai Ying, Ruan Renzhong, Chai Guowu, et al. Speciesidentification of wetland vegetationbased on spectral characteristics [J]. Remote Sensing for Land & Resources (国土资源遥感), 2016, 28(3):86-90 (in Chinese).

【9】Chen Shuren, Li Yixin, Mao Hanping, et al. Research on distinguishing weed from crop using spectrum analysis technology [J]. Spectroscopy and Spectral Analysis (光谱学与光谱分析), 2009, 29(2): 463-4(in Chinese).

【10】Vrindts E, Jde B, Ramon H. Weed detection using canopy reflection [J].Precision Agriculture, 2002, 3(1):63-80.

【11】Wang Haiqing, Ji Changying, Chen Kunjie. Research on identification of cucumber, stem and leaf based on spectrum analysis technology [J]. Spectroscopy and Spectral Analysis (光谱学与光谱分析), 2011, 31(10): 2834-2838 (in Chinese).

【12】Lu Yongshuai, Li Yuanxiang,Peng Xishuai. Poppy detection in airborne multispectral data based on deep belief network [J]. Remote Sensing Information (遥感信息), 2017, 32(4): 98-103 (in Chinese).

【13】Alrawashdeh M J, Radwan T. Wilk’s lambda based on robust method [C]. Ism International Statistical Conference. AIP Publishing LLC, 2017:51-67.

【14】Zhou Hongyu, Zheng Hongping. The effect and method of quantitative analysis of “Red-Edge”of vegetation [J]. Remote Sensing Information (遥感信息), 2010, 2010(4): 112-11(in Chinese).

引用该论文

WANG Hao,QIN Lai-an,JING Xu,HE Feng,TAN Feng-fu,HOU Zai-hong. Research of identification of papaver based on spectral analysis[J]. Chinese Journal of Quantum Electronics, 2019, 36(2): 151-155

王浩,秦来安,靖旭,何枫,谭逢富,侯再红. 基于光谱分析的罂粟识别研究[J]. 量子电子学报, 2019, 36(2): 151-155

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF

手机十三水作弊软件 华东15选5玩法 88时时彩官网 曾道免费大全资料 搜狐彩票3d试机号 青海快三今天推荐号 河内5分彩是官方开奖吗 江西多乐彩一定牛 福彩3d最新方法技巧 福彩天津快乐十分开奖 如何看懂快3走势图