手机十三水作弊软件|十三水棋牌游戏赚钱
首页 > 论文 > 激光技术 > 43卷 > 4期(pp:579-584)

部分相干月牙形光束在非Kolmogorov谱中的漂移

Beam wander of a partially coherent crescent-like beam in non-Kolmogorov turbulence

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了探究部分相干月牙形光束在非Kolmogorov谱中漂移的演化规律, 采用拓展Huygens-Fresnel原理, 得到了相应的解析表达式, 并运用MATLAB进行了数?#30340;?#25311;。结果表明, 在非Kolmogorov谱中, 部分相干月牙形光束的漂移分别随着各向异性参量的增大、湍流内尺度的增大、湍流外尺度的减小、结构常数的减小而降低; 与各向同性湍流相比, 各向异性湍流对漂移的影响较小; 月牙形光束的最大光强位置的离轴距离分别随着波长、光束?#36164;?#30340;增大而增大, 随着相干长度的增大而减小。月牙形光束由于最大光强位置的离轴特性, 有利于绕过障碍物传输, 所得结论对实际光通信有?#27426;?#21442;?#25216;?#20540;。

Abstract

In order to investigate the evolution of beam wander of partially coherent crescent beams in non-Kolmogorov turbulence, the extended Huygens-Fresnel principle was used and the corresponding analytical expressions were obtained. Numerical simulation was carried out by using MATLAB. The results show that, in the non-Kolmogorov turbulence, beam wander of partially coherent crescent-like beams decreases with the increase of anisotropic parameters, the increase of turbulent inner scale, the decrease of turbulent outer scale and the decrease of structural constants respectively. Compared with isotropic turbulence, anisotropic turbulence has little effect on beam wander. Off-axis distance of the maximum intensity position of crescent-like beam increases with the increase of wavelength and beam order respectively. It decreases with the increase of coherence length. Off-axis characteristic at the position of the maximum intensity is beneficial for crescent-like beams to transmit around obstacles. The obtained conclusions have some reference value for practical optical communication.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN012

DOI:10.7510/jgjs.issn.1001-3806.2019.04.025

所属栏目:激光与光电子技术应用

基金项目:国家自然科学基金资助项目(11374015)

收稿日期:2018-11-14

修改稿日期:2018-12-07

网络出版日期:--

作者单位    点击查看

周正兰:安徽师范大学 物理与电子信息学院, 芜湖 241002
袁扬胜:安徽师范大学 物理与电子信息学院, 芜湖 241002
束 杰:安徽师范大学 物理与电子信息学院, 芜湖 241002
徐 翔:安徽师范大学 物理与电子信息学院, 芜湖 241002
屈 军:安徽师范大学 物理与电子信息学院, 芜湖 241002

联系人作者:屈军([email protected])

备注:周正兰(1994-), 女, 硕士研究生, 主要从事激光传输方面的研究。

【1】CHEN Y H, WANG F, LIU L, et al. Generation and propagation of a partially coherent vector beam with special correlation functions[J]. Physical Review, 2014, A89(1): 1-11.

【2】CAI Y J, HE S L. Partially coherent flattened Gaussian beam and its paraxial propagation properties[J]. Journal of the Optical Society of America, 2006, A23(10): 2623-2628.

【3】NELSON M, AVRAMOV Z S, KOROTKOVA O, et al. Scintillation reduction in pseudo multi-Gaussian Schell-model beams in the maritime environment[J]. Optics Communications, 2016, 364: 145-149.

【4】FEI J C, CUI Z F, WANG J S, et al. Propagation characteristics of elegant Laguerre-Gaussian beam passing through a circular aperture in turbulent atmosphere[J]. Laser Technology, 2011, 35(6): 849-853 (in Chinese).

【5】LIANG C, WANG F, LIU X, et al. Experimental generation of cosine-Gaussian-correlated Schell-model beams with rectangular symmetry[J]. Optics Letters, 2014, 39(4): 769-772.

【6】GBUR G. Partially coherent beam propagation in atmospheric turbulence[J]. Journal of the Optical Society of America, 2014, A31(9): 2038-2045.

【7】WEN W, JIN Y, HU M J, et al. Beam wander of coherent and partially coherent Airy beam arrays in a turbulent atmosphere[J]. Optics Communications, 2018, 415: 48-55.

【8】VOELZ D, XIAO X, KOROTKOVA O. Numerical modeling of Schell-model beams with arbitrary far-field patterns[J] . Optics Letters, 2015, 40(3): 352-355.

【9】GORI F, SANTARSUERO M. Devising genuine spatial correlation functions[J]. Optics Letters, 2007, 32(24): 3531-3533.

【10】WANG F, KOROTKOVA O. Convolution approach for beam propagation in random media[J]. Optics Letters, 2016, 41(7): 1546-1549.

【11】ZHONG Y L, CUI Z F, SHI J P, et al. Propagation properties of partially coherent flat-topped beam array in a turbulent atmosphere[J]. Laser Technology, 2010, 34(4): 542-547(in Chinese).

【12】XU K T,YUAN Y SH, FENG X,et al. Propagation properties of partially coherent flat-topped beam array in oceanic turbulence[J]. Laser Technology, 2015, 39(6): 877-884(in Chinese).

【13】ZHAO Q, HAO H Y, FAN H Y, et al. Focusing characteristics of partially coherent cosh-Gaussian beams propagation through turbulent atmosphere[J]. Laser Technology, 2016, 40(5): 750-755(in Chinese).

【14】CAI Y. Generation of various partially coherent beams and their propagation properties in turbulent atmosphere: A review[J]. Progress in Electromagnetics Research Symposium Proceedings, 2011, 7924(2): 170-180.

【15】GBUR G, WOLF E. Spreading of partially coherent beams in random media[J]. Journal of the Optical Society of America, 2002, A19(8): 1592-1598.

【16】YANG T, JI X L, LI X Q. Propagation characteristics of partially coherent decentred annular beams propagating through oceanic turbulence[J]. Acta Physica Sinica, 2015, 64(20): 204206(in Chinese).

【17】SALEM M, SHIRAI T, DOGARIU A, et al. Long-distance propagation of partially coherent beams through atmospheric turbulence[J]. Optics Communications, 2003, 216: 261-265.

【18】WANG F, LI J, PIEDRA M, et al. Propagation dynamics of partially coherent crescent-like optical beams in free space and turbulent atmosphere[J]. Optics Express, 2017, 25(21): 26055-26066.

【19】FENG J X, YUAN Y Sh, QU J, et al. Beam wander of multi-Gaussian schell-model hermite-Gaussian beam in atmospheric turbulence[J]. Progress in Electromagnetics Research Symposium Proceedings, 2017, 22(19): 311-316.

引用该论文

ZHOU Zhenglan,YUAN Yangsheng,SHU Jie,XU Xiang,QU Jun. Beam wander of a partially coherent crescent-like beam in non-Kolmogorov turbulence[J]. Laser Technology, 2019, 43(4): 579-584

周正兰,袁扬胜,束 杰,徐 翔,屈 军. 部分相干月牙形光束在非Kolmogorov谱中的漂移[J]. 激光技术, 2019, 43(4): 579-584

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF

手机十三水作弊软件 mg娱乐首页 广东十一选五软件哪个好 浩博国际娱乐app 万汇娱乐棋牌 组选包胆中奖概率 胆码图 11选5秘籍十招直三 一天稳赚20元的方法 二八杠推筒子安卓游戏 pk10彩票平台网站