手机十三水作弊软件|十三水棋牌游戏赚钱
首页 > 论文 > 激光技术 > 43卷 > 4期(pp:563-568)

相干光通信系统中QPSK调?#24179;?#35843;实验研究

Experimental study about QPSK modulation and demodulation in coherent optical communication systems

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了使相干接收机输出的两路信号相位正交, 正确地解调信号, 采用施密特正交化算法对两路信号进行了理论分析和实验验证, 经正交失衡算法补偿后, 星座图的性能得到改善; 通过松尾环实现载频的跟踪、捕获?#28304;?#21040;载波恢复, 实现了基带信号正确解调。结果表明, 经施密特正交化算法补偿后, 旋转的星座图得到了修正, 星座点间的欧几里德距离不相等问题得到修正, 基带信号畸变得到了改善; 当频偏在-300kHz~300kHz范围内, 松尾环可以实现载频的跟踪、捕获, 基带信号实现正确解调。该方案实现复杂度低, 切实可行, 适用于相干光通信系统的研究。

Abstract

In order to make the received two signals orthogonal to each other and correctly demodulate the signal, Schmitt orthogonalization algorithm was used to theoretically analyze and experimentally verify the two signals. The performance of constellation was improved after orthogonal imbalance compensation. The carrier frequency was tracked and captured by the loose tail ring to achieve carrier recovery, and the baseband signal was demodulated correctly. The experimental results show that, after compensation by Schmidt orthogonalization algorithm, the rotated constellation is corrected and the problem of unequal Euclidean distance between constellation points is improved. The baseband signal distortion becomes corrected. When the frequency offset is in the range of -300kHz~300kHz, the loose tail loop can track and capture carrier frequency and baseband signal can be correctly demodulated. The scheme is low complexity and practical, and is suitable for the study of coherent optical communication systems.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN929.1

DOI:10.7510/jgjs.issn.1001-3806.2019.04.022

所属?#25913;浚?a href='../Journals/JColumnList?cid=1137' title='查看该期刊此?#25913;?#19979;其他论文' class='TagKey' target='_blank'>光通信与光信息技术

基金项目:国家自然科学基金资助项目(61377080;60977054)

收稿日期:2018-08-28

修改稿日期:2018-10-16

网络出版日期:--

作者单位    点击查看

李鹏霞?#20309;?#23433;理工大学 自动化与信息工程学院, 西安 710048
柯熙政?#20309;?#23433;理工大学 自动化与信息工程学院, 西安 710048

联系人作者:柯熙政([email protected])

备注:李鹏霞(1992-),女,硕士研究生,现从事相干光通信技术方面的研究。

【1】YOSHIDA T, SUGIHARA T, SAWADA K, et al. Polar coordinate transformation based dual binary-drive QPSK modulation[C]//Optical Fiber Communication. New York, USA: IEEE, 2010: OMK4.

【2】YAN S, WENG X, GAO Y, et al. Generation of square or hexagonal 16-QAM signals using a dual-drive IQ modulator driven by binary signals[J]. Optics Express, 2012, 20(27): 29023-29034.

【3】SUN H, WU K T, ROBERTS K. Real-time measurements of a 40Gb/s coherent system[J]. Optics Express, 2008, 16(2): 873-879.

【4】CHUNG H S, SUN H C, KIM K, et al. Effects of carrier phase estimation on front-end IQ mismatch compensation in DP-QPSK coherent receiver[C]//Optoelectronics and Communications Conference Held Jointly with 2013 International Conference on Photonics in Switching. New York, USA: IEEE, 2013: TuPR_2.

【5】SAVORY S J. Digital coherent optical receivers: algorithms and subsystems[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(5): 1164-1179.

【6】WANG X J, LEIBLE B, WANG W H, et al. Joint IQ imbalance compensation and channel estimation in coherent optical OFDM systems[C]//2016 10th International Conference on Signal Processing and Communication Systems. New York, USA: IEEE, 2016: 16653749.

【7】FATADIN I, SAVORY S J, IVES D. Compensation of quadrature imbalance in an optical QPSK coherent receiver[J]. IEEE Photonics Technology Letters, 2008, 20(20): 1733-1735.

【8】SUN H C, CHUNG H S, KIM K. Impact of quadrature imbalance in optical coherent QPSK receiver[J]. IEEE Photonics Technology Lett-ers, 2009, 21(11): 709-711.

【9】PETROU C S, VGENIS A, ROUDAS I, et al. Quadrature imbalance compensation for PDM QPSK coherent optical systems[J]. IEEE Photonics Technology Letters, 2009, 21(24): 1876-1878.

【10】FARUK M S, KIKUCHI K. Compensation for in-phase/quadrature imbalance in coherent-receiver front end for optical quadrature am-plitude modulation[J]. IEEE Photonics Journal, 2013, 5(2): 7800110.

【11】NGUYEN T H, GOMEZ-AGIS F, GAY M, et al. IQ imbalance compensation based on maximum SNR estimation in coherent QPSK systems[C]//2014 16th International Conference on Transparent Optical Networks. New York, USA: IEEE, 2014: 14526430.

【12】FARUK M S, SAVORY S J. Digital signal processing for coherent transceivers employing multilevel formats[J]. Journal of Lightwave Technology, 2017, 35(5): 2-13.

【13】MAGARINI M, BARLETTA L, SPALVIERI A, et al. Pilot-symbols-aided carrier-phase recovery for 100G PM-QPSK digital cohe-rent receivers[J]. IEEE Photonics Technology Letters, 2012, 24(9): 739-741.

【14】FLUDGER C R S, BOSCO G, BILAL S M, et al. Multistage carrier phase estimation algorithms for phase noise mitigation in 64-quadrature amplitude modulation optical systems[J]. Journal of Lightwave Technology, 2014, 32(17): 2973-2980.

【15】PAJOVIC M, MILLAR D, KOIKEAKINO T, et al. Multi-pilot aided carrier phase estimation for single carrier coherent systems[C]//Signal Processing in Photonic Communications. Washington DC, USA: The Optical Society of America, 2015: 3-4.

【16】HOSSAIN M J, FARUK M S. An efficient scheme for receiver-side quadrature imbalance compensation in coherent optical receivers[C]// 2012 International Conference on Fiber Optics and Photonics. New York, USA: IEEE, 2012: 13597286.

【17】FANG Y, GU Q. Angle statistical blind compensation method for IQ imbalance of QPSK signal [J]. System Simulation Technology, 2012, 8(2): 87-92(in Chinese).

【18】CHANG Q, BI C K, ZHANG Q Sh. The principle and implementation of Costas ring in DSSSK system[J]. Microcomputer Information, 2006, 22(35): 241-242(in Chinese).

【19】ZHANG X. Digital baseband signal processing algorithm for spread spectrum communication and its VLSI implementation [M]. Beijing: Science Press, 2004: 113-115(in Chinese).

【20】DU Y. MATLAB and FPGA implementation of digital communication synchronization technology[M]. Beijing: Publishing House of Electronics Industry, 2015: 96-218(in Chinese).

引用该论文

LI Pengxia,KE Xizheng. Experimental study about QPSK modulation and demodulation in coherent optical communication systems[J]. Laser Technology, 2019, 43(4): 563-568

李鹏霞,柯熙政. 相干光通信系统中QPSK调?#24179;?#35843;实验研究[J]. 激光技术, 2019, 43(4): 563-568

您的浏览器?#24674;?#25345;PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF

手机十三水作弊软件 躲猫猫电子游戏 巴塞罗那 舟山体彩飞鱼开奖79期 澳洲幸运8走势 台湾麻将规则图解 法兰克福展览 11选5开奖结果14111760期 甘肃快三开奖纟结果 吉利三分彩是真的吗 圣斗士沙加