手机十三水作弊软件|十三水棋牌游戏赚钱
首页 > 论文 > 激光与光电子学进展 > 56卷 > 9期(pp:92402--1)

表面等离子体共振成像检测桃胶多糖与半乳糖凝集素-3的相互作用

Detection of Interaction Between Peach-Gum Polysaccharides and Galectin-3 via Surface Plasmon Resonance Imaging

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

利用自组装的数字全息表面等离子体共振成像技术,分别检测了两?#24535;?#26377;不同分子质量的桃胶多糖(PGP-1与PGP-2)与半乳糖凝集素-3的相互作用。制备了表面等离子体共振成像生物芯片,同时检测了具有不同浓度的桃胶多糖样品与半乳糖凝集素-3的结合过程,制作了标?#35760;?#32447;,并计算了相互作用的结合平衡常数。结果表明,两?#24535;?#26377;不同分子质量的桃胶多糖可以直接结合半乳糖凝集素-3,其中PGP-1的结合平衡常数为8.36×105 M-,PGP-2的结合平衡常数为1.24×105 M-。结合曲线符合生物分子相互作用的规律,证明了该方法在多通量生物检测中的可行性。该方法实验装置简单、易操作、无需标记、成本低,在高通量分析技术中具有?#27426;?#30340;应用前景。

Abstract

The interactions between galectin-3 and two types of peach-gum polysaccharides with different molecular weights (PGP-1 and PGP-2) were detected herein via self-assembly surface plasma resonance (SPR) imaging based on digital holography. Different concentrations of peach-gum polysaccharides and Galectin-3 were simultaneously detected on an SPR biochip prepared for detecting the concentrations. The standard curves were derived and the binding equilibrium constants of the reactions were calculated. The results show that the two types of peach-gum polysaccharides can directly bind to Galectin-3. The binding equilibrium constants of PGP-1 and PGP-2 are 8.36×105 and 1.24×105 M-, respectively. The binding curves conform to the law of biomolecular interaction, demonstrating the feasibility of the proposed method in high-throughput biological detection. The proposed method can be easily controlled and is simple, label-free, and inexpensive. It is potentially applicable to the high-throughput microanalysis technology.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436.1

DOI:10.3788/lop56.092402

所属栏目:表面光学

基金项目:国家自然科学基金(61605063)、广东高校省级重点平台和重大科研项目(2017GKTSCX017)、广东省自然科学基金(2018A030313912)、广东省高等职业院校珠江学者岗位计划资助项目(2016年度)

收稿日期:2018-10-16

修改稿日期:2018-11-26

网络出版日期:2018-12-04

作者单位    点击查看

帅玉环:暨南大学理工学院物理学系, 广东 广州 510632
齐攀:广东交通职业技术学院电子工程系, 广东 广州 510650
李莹:暨南大学预科部, 广东 广州 510610
胡翠英:暨南大学理工学院物理学系, 广东 广州 510632
蔡梦洁:暨南大学生命科学技术学院生物工程学系, 广东 广州 510632
冉艳红:暨南大学生命科学技术学院生物工程学系, 广东 广州 510632
李仕萍:暨南大学理工学院光电工程系, 广东 广州 510632
钟金钢:暨南大学理工学院光电工程系, 广东 广州 510632

联系人作者:钟金钢([email protected]); 李仕萍([email protected]);

【1】Huang X S. The properties, processing, development and utilization of peach gum[J]. Special Wild Economic Animal and Plant Research, 2004, 26(1): 47-51.
黄雪松. 桃胶的性质、加工及其开发利用[J]. 特产研究, 2004, 26(1): 47-51.

【2】Zheng Y L, Dong P P, Mei Q X. Progress in pharmacological action and clinical application of characteristic chemical constituents of peach gum[J]. Lishizhen Medicine and Materia Medica Research, 2017, 28(7): 1728-1730.
郑依玲, 董鹏鹏, 梅全喜. 桃胶特性化学成分药理作用及临床应用研究进展[J]. 时珍国医国药, 2017, 28(7): 1728-1730.

【3】Barondes S H, Castronovo V, Cooper D N W, et al. Galectins: a family of animal β-galactoside-binding lectins[J]. Cell, 1994, 76(4): 597-598.

【4】Kobayashi T, Shimura T, Yajima T, et al. Transient silencing of galectin-3 expression promotes both in vitro and in vivo drug-induced apoptosis of human pancreatic carcinoma cells[J]. Clinical & Experimental Metastasis, 2011, 28(4): 367-376.

【5】Ahmed H, Alsadek D M M. Galectin-3 as a potential target to prevent cancer metastasis[J]. Clinical Medicine Insights-Oncology, 2015, 9: 113-121.

【6】Jepsen M D E, Sparvath S M, Nielsen T B, et al. Publisher correction: development of a genetically encodable FRET system using fluorescent RNA aptamers[J]. Nature Communications, 2018, 9: 669.

【7】Fields S, Song O K. A novel genetic system to detect protein-protein interactions[J]. Nature, 1989, 340(6230): 245-246.

【8】Totten S M, Kullolli M, Pitteri S J. Multi-lectin affinity chromatography for separation, identification, and quantitation of intact protein glycoforms in complex biological mixtures[M]∥Totten S M, Kullolli M, Pitteri S J. Methods in molecular biology. New York: Springer, 2017: 99-113.

【9】Engvall E, Perlmann P. Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G[J]. Immunochemistry, 1971, 8(9): 871-874.

【10】Verma M S, Tsaloglou M N, Sisley T, et al. Sliding-strip microfluidic device enables ELISA on paper[J]. Biosensors and Bioelectronics, 2018, 99: 77-84.

【11】Zhang Y P, Shi S Y, Guo J F, et al. On-line surface plasmon resonance-high performance liquid chromatography-tandem mass spectrometry for analysis of human serum albumin binders from Radix Astragali[J]. Journal of Chromatography A, 2013, 1293: 92-99.

【12】Nedelkov D, Nelson R W. Surface plasmon resonance mass spectrometry: recent progress and outlooks[J]. Trends in Biotechnology, 2003, 21(7): 301-305.

【13】Liparoto S F, Ciardelli T L. Biosensor analysis of the interleukin-2 receptor complex[J]. Journal of Molecular Recognition, 1999, 12(5): 316-321.

【14】Majka J, Speck C. Analysis of protein-DNA interactions using surface plasmon resonance[M]∥Seitz H. Analytics of protein-DNA interactions. Advances in biochemical engineering/biotechnology, Berlin, Heidelberg: Springer, 2007, 104: 13-36.

【15】Shushama K N, Rana M M, Inum R, et al. Graphene coated fiber optic surface plasmon resonance biosensor for the DNA hybridization detection: simulation analysis[J]. Optics Communications, 2017, 383: 186-190.

【16】Jain P K, El-Sayed I H, El-Sayed M A. Au nanoparticles target cancer[J]. Nano Today, 2007, 2(1): 18-29.

【17】Patching S G. Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery[J]. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2014, 1838(1): 43-55.

【18】Joshi S, Segarra-Fas A, Peters J, et al. Multiplex surface plasmon resonance biosensing and its transferability towards imaging nanoplasmonics for detection of mycotoxins in barley[J]. The Analyst, 2016, 141(4): 1307-1318.

【19】Cooper M A. Optical biosensors in drug discovery[J].Nature Reviews Drug Discovery, 2002, 1(7): 515-528.

【20】Li Y, Qi P, Li S P, et al. A label-free surface plasmon resonance biochip for in situ detection of shrimp hemocyanin[J]. Food Science, 2017, 38(12): 234-239.
李莹, 齐攀, 李仕萍, 等. 表面等离子体共振生物芯片无标记实时检测虾血蓝蛋白[J]. 食品科学, 2017, 38(12): 234-239.

【21】Campbell C, Kim G. SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics[J].Biomaterials, 2007, 28(15): 2380-2392.

【22】Fan Z K, Zhang Z C, Wang B Z, et al. Research progress of the photonic crystal fiber refractive idex sensor based on surface plasmon resonance[J]. Laser & Optoelectronics Progress, 2019, 56(7): 070004.
范振凯, 张子超, 王保柱, 等. 基于表面等离子体共振效应光子晶体光纤折射率传感器的研究进展[J]. 激光与光电子学进展, 2019, 56(7): 070004.

【23】Tong K, Dang P, Wang M T, et al. Enhancement of sensitivity of photonic crystal fiber surface plasmon resonance biosensor using TiO2 film[J]. Chinese Journal of Lasers, 2018, 45(6): 0610002.
童凯, 党鹏, 汪梅婷, 等. 采用TiO2薄膜增强光子晶体光纤表面等离子体共振生物传感器灵敏度的建模分析[J]. 中国激光, 2018, 45(6): 0610002.

【24】Zhang C L, Xin Z Q, Min C J, et al. Refractive index sensing imaging technology based on optical surface wave[J]. Acta Optica Sinica, 2019, 39(1): 0126006.
张崇磊, 辛自强, 闵长俊, 等. 基于光学表面波的折射率传感成像技术[J]. 光学学报, 2019, 39(1): 0126006.

【25】Wong C L, Olivo M. Surfaceplasmon resonance imaging sensors: a review[J]. Plasmonics, 2014, 9(4): 809-824.

【26】Li S P, Zhong J G. Simultaneous amplitude-contrast and phase-contrast surface plasmon resonance imaging by use of digital holography[J]. Biomedical Optics Express, 2012, 3(12): 3190.

【27】Otto A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection[J]. Zeitschrift Für Physik a Hadrons and Nuclei, 1968, 216(4): 398-410.

【28】Fontana E, Kim J M, Llamas-Garro I, et al. Microfabricated Otto chip device for surface plasmon resonance-based optical sensing[J]. Applied Optics, 2015, 54(31): 9200.

【29】Chen S J, Su Y D,Hsiu F M, et al. Surface plasmon resonance phase-shift interferometry: real-time DNA microarray hybridization analysis[J]. Journal of Biomedical Optics, 2005, 10(3): 034005.

【30】Schnars U, Jüptner W P O. Digital recording and numerical reconstruction of holograms[J]. Measurement Science and Technology, 2002, 13(9): R85-R101.

【31】Skidmore G L, Chase H A. Two-component protein adsorption to the cation exchanger S Sepharose FF[J]. Journal of Chromatography A, 1990, 505(2): 329-347.

【32】Qi P, Zhong J G, Ma X, et al. Real time and label-free research on the detection of pituitary adenylate cyclase-activating polypeptide based on surface plasmon resonance technique[J]. Clinical Laboratory, 2018, 64(1/2): 113-122.

引用该论文

Shuai Yuhuan,Qi Pan,Li Ying,Hu Cuiying,Cai Mengjie,Ran Yanhong,Li Shiping,Zhong Jingang. Detection of Interaction Between Peach-Gum Polysaccharides and Galectin-3 via Surface Plasmon Resonance Imaging[J]. Laser & Optoelectronics Progress, 2019, 56(9): 092402

帅玉环,齐攀,李莹,胡翠英,蔡梦洁,冉艳红,李仕萍,钟金钢. 表面等离子体共振成像检测桃胶多糖与半乳糖凝集素-3的相互作用[J]. 激光与光电子学进展, 2019, 56(9): 092402

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF

手机十三水作弊软件 统一彩票app下载ios 新时时几点结束 统一开奖为何会输 上海快3开奖走势图近50期 分分pk10计划 北京麻将馆小游戏4399 2019东方心经资枓大全 福彩3d助手 天津时时 青鹏棋牌