手机十三水作弊软件|十三水棋牌游戏赚钱
首页 > 论文 > 激光与光电子学进展 > 56卷 > 4期(pp:41603--1)

一种光控的电磁诱导透明太赫兹超材料

Terahertz Metamaterial Based on Controllable Electromagnetic Induced Transparency Structure

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于半导体硅电导?#23454;?#21487;调性,设计了一种基于金属短线(CW)和圆形开口谐振环(SRR)的可控电磁诱导透明(EIT)结构,实现了对电磁诱导透明(EIT)效应的主动调控。研究发现,当半导体硅的电导率为1 S/m时,透射谱在1.33 THz附近呈现出透射率约为94%的窄透明窗口。当电导率为5000 S/m时,透射率变为58%; 当电导率为15000 S/m时,EIT效应基本消失,调控效率达到了66%。利用耦合模理论?#22278;?#21516;电导?#23454;?#36879;射谱进行拟合,发现拟合曲线与透射谱非常吻合,这表明仿真结果和理论计算结果是一致的。仿真和计算结果表明,当硅的电导率增大时,?#30340;?#24335;的阻尼率增大,其损耗也增大,当电导率增大到一定值时,?#30340;?#24335;的谐振不能被激发,EIT效应消失。

Abstract

Based on the tunable conductivity of semiconductor silicon, a controllable electromagnetic induced transparency (EIT) structure composed of cut wires (CW) and split-ring resonators (SRR) is designed, and the active modulation of EIT effect is realized. It is found that a narrow transparency window with a transmittance of about 94% appears in the transmission spectrum at near 1.33 THz when the conductivity of semiconductor silicon was 1 S/m. When the conductivity increases to 5000 S/m, the transmittance becomes 58% and when the conductivity approaches 15000 S/m, the EIT effect almost disappears, and the modulation efficiency approaches 66%. The transmission spectra under different conductivities are consistent with their fitting curves by the coupled mode theory, indicating that the simulation results are in accord with the theoretical calculation findings. Both the simulation and calculation results show that the damping ratio of dark mode and the loss increase when the electrical conductivity of silicon increases. When the electrical conductivity reaches a certain value, the resonance of dark mode is not be stimulated and thus the EIT effect disappears.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436

DOI:10.3788/lop56.041603

所属栏目:材料

基金项目:国家自然科学基金(61701434)、山东省自然科学基金面上项目(ZR201702200400)、山东省高等学校科技计划项目(J17KA087)

收稿日期:2018-08-08

修改稿日期:2018-09-07

网络出版日期:2018-09-10

作者单位    点击查看

王娅茹:枣庄学院光电工程学院, 山东 枣庄 277160
梁兰菊:枣庄学院光电工程学院, 山东 枣庄 277160
杨茂生:枣庄学院光电工程学院, 山东 枣庄 277160天津大学精密仪器与光电子工程学院, 激光与光电子研究所, 天津 300072
王旭娟:枣庄学院光电工程学院, 山东 枣庄 277160
王岩:枣庄学院光电工程学院, 山东 枣庄 277160

联系人作者:王岩([email protected])

【1】Fleischhauer M, Imamoglu A, Marangos J P. Electromagnetically induced transparency: Optics in coherent media[J]. Reviews of Modern Physics, 2005, 77(2): 633.

【2】Chiam S Y, Singh R, Rockstuhl C, et al. Analogue of electromagnetically induced transparency in a terahertz metamaterial[J]. Physical Review B, 2009, 80(15): 153103.

【3】Li Z Y, Ma Y F, Huang R, et al. Manipulating the plasmon-induced transparency in terahertz metamaterials[J]. Optics Express, 2011, 19(9): 8912-8919.

【4】Papasimakis N, Fedotov V A, Zheludev N I, et al. Metamaterial analog of electromagnetically induced transparency[J]. Physical Review Letters, 2008, 101(25): 253903.

【5】Tassin P, Zhang L, Koschny T, et al. Low-loss metamaterials based on classical electromagnetically induced transparency[J]. Physical Review Letters, 2009, 102(5): 053901.

【6】Papasimakis N, Fu Y H, Fedotov V A, et al. Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency[J]. Applied Physics Letters, 2009, 94(21): 211902.

【7】Tassin P, Zhang L, Koschny T, et al. Planar designs for electromagnetically induced transparency in metamaterials[J]. Optics Express, 2009, 17(7): 5595-5605.

【8】Zhang S, Genov D A, Wang Y, et al. Plasmon-induced transparency in metamaterials[J]. Physical Review Letters, 2008, 101(4): 047401.

【9】Yannopapas V, Paspalakis E, Vitanov N V. Electromagnetically induced transparency and slow light in an array of metallic nanoparticles[J]. Physical Review B, 2009, 80(3): 035104.

【10】Liu N, Langguth L, Weiss T, et al. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit[J]. Nature Materials, 2009, 8(9): 758-762.

【11】Li G S, Yan F P, Wang W, et al. Analysis of multiband and broadband electromagnetically induced transparency based on three-dimensional coupling[J]. Laser & Optoelectronics Progress, 2018, 55(12): 123003.
李广森, 延凤平, 王伟, 等. 基于三维耦合的多波段宽带电磁诱导透明分析[J]. 激光与光电子学进展, 2018, 55(12): 123003.

【12】Ning R X, Bao J, Jiao Z. Wide band electromagnetically induced transparency in graphene metasurface of composite structure[J]. Acta Physica Sinica, 2017, 66(10): 100202.
宁仁霞, 鲍婕, 焦铮. 基于石墨烯超表面的宽带电磁诱导透明研究[J]. 物理学报, 2017, 66(10): 100202.

【13】Kekatpure R D, Barnard E S, Cai W S, et al. Phase-coupled plasmon-induced transparency[J]. Physical Review Letters, 2010, 104(24): 243902.

【14】Yao Y, Kats M A, Shankar R, et al. Wide wavelength tuning of optical antennas on graphene with nanosecond response time[J]. Nano Letters, 2014, 14(1): 214-219.

【15】Zhu Z H, Guo C C, Liu K, et al. Electrically tunable polarizer based on anisotropic absorption of graphene ribbons[J]. Applied Physics A, 2014, 114(4): 1017-1021.

【16】Zhang Y, Feng Y J, Zhu B, et al. Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency[J]. Optics Express, 2014, 22(19): 22743-22752.

【17】Ding J, Arigong B, Ren H, et al. Tunable complementary metamaterial structures based on graphene for single and multiple transparency windows[J]. Scientific Reports, 2015, 4: 6128.

【18】Gao H, Yan F P, Tan S Y, et al. Design of ultra-thin broadband terahertz metamaterial absorber based on patterned graphene[J]. Chinese Journal of Lasers, 2017, 44(7): 0703024.
高红, 延凤平, 谭?#21152;? 等. 基于有图案石墨烯的超薄宽带太赫兹超材料吸收体的设计[J]. 中国激光, 2017, 44(7): 0703024.

【19】Fan T X, Zhang H F, Li Y, et al. Tunable double plasmon-induced transparency windows in metamaterial formed by symmetric graphene and split ring resonators structure[J]. Acta Photonica Sinica, 2017, 46(8): 0816004.
?#30701;?#39336;, 张惠芳, 李勇, 等. 石墨烯?#25237;?#31216;开口谐振环超材料中可调谐的双等离激元诱导透明现象[J]. 光子学报, 2017, 46(8): 0816004.

【20】Gu J Q, Singh R, Liu X J, et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials[J]. Nature Communications, 2012, 3: 1151.

【21】Shen N H, Massaouti M, Gokkavas M, et al. Optically implemented broadband blueshift switch in the terahertz regime[J]. Physical Review Letters, 2011, 106(3): 037403.

【22】Peng B, zdemir 瘙塁 K, Chen W J, et al. What is and what is not electromagnetically induced transparency in whispering-gallery microcavities[J]. Nature Communications, 2014, 5: 5082.

【23】Tan W, Sun Y, Wang Z G, et al. Manipulating electromagnetic responses of metal wires at the deep subwavelength scale via both near- and far-field couplings[J]. Applied Physics Letters, 2014, 104(9): 091107.

【24】Joannopoulos J D, Johnson S G, Winn J N, et al. Photonic Crystals: Molding the Flow of Light[M]. USA: Princeton University Press, 2011.

【25】Haus H A. Waves and fields in optoelectronics[M]. Englewood Cliffs, NJ: Prentice-Hall, 1984.

引用该论文

Wang Yaru,Liang Lanju,Yang Maosheng,Wang Xujuan,Wang Yan. Terahertz Metamaterial Based on Controllable Electromagnetic Induced Transparency Structure[J]. Laser & Optoelectronics Progress, 2019, 56(4): 041603

王娅茹,梁兰菊,杨茂生,王旭娟,王岩. 一种光控的电磁诱导透明太赫兹超材料[J]. 激光与光电子学进展, 2019, 56(4): 041603

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF

手机十三水作弊软件 蒙彼利埃碧蓝航线 qq空间海底总动员游戏 上海时时乐彩经网 云南快乐十分技巧 巴列卡诺近期战绩 恐怖实验室注册 新浪彩票1930 赫罗纳主力球员 pk10走势图网页版 财富小姐游戏